Find The Equation Of The Line (In Standard Form)Passing Through The Points (-3,4) And (5,1).

Find the equation of the line (in standard form)passing through the points (-3,4) and (5,1).

______________________________________________

\huge\rm{ANSWER:}

  • 3x + 8y = 23

______________________________________________

\huge\rm{SOLUTION:}

First, solve for the slope. Using the points (-3,4) and (5,1), we have

 \rm{m =  \frac{1 - 4}{5 - ( - 3)}  =  \frac{ - 3}{8}}

Substitute one of the given points and the value for slope in the equation y = mx+b, and solve for b. Using the point (-3,4), we have

 \rm{4 =  \frac{ - 3}{8}  (- 3) + b}

 \rm{32 = 9 + 8b}

 \rm{8b = 23}

 \rm{b =  \frac{23}{8} }

Therefore, the equation of the line passing through (-3.4) and (5,1) is

 \rm{y =  \frac{ - 3}{8} x +  \frac{23}{8}}  \: or \:  \rm{3x + 8y = 23}

To check, substitute the coordinates of the point (5,1) into the above equation.

 \rm{3x + 8y - 23 = 0}

 \rm{3(5) + 8(1) - 23 = 0}

 \rm{15 + 8 - 23 = 0}

 \rm{0 = 0}

Therefore, the equation 3x+8y=23 is indeed the required equation.

______________________________________________

\huge\rm{REMEMBER:}

 \boxed{  \begin{array}{}{ \rm{The \: slope - intercept \: from \: of \: the} } \\ { \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{equation \: of \: a \: line \: is}} \\ {  \rm{y= mx + b}} \\ { \rm{where \: m \: is \: the \: slope \: of \: the \: line}} \\ { \rm{\: and \: b \: is \: the \: y - intercept.}}\\  \end{array}}

______________________________________________

#CarryOnlearning


Comments